Distributed and Scalable PCA in the Cloud

Arun Kumar Nikos Karampatziakis, Paul Mineiro,
Department of Computer Sciences Markus Weimer, Vijay K Narayanan
University of Wisconsin-Madison Microsoft Cloud and Information Services Lab

Abstract

Principal Component Analysis (PCA) is a popular technique with many appli-
cations. Recent randomized PCA algorithms scale to large datasets but face a
bottleneck when the number of features is also large. We propose to mitigate
this issue using a composition of structured and unstructured randomness within a
randomized PCA algorithm. Initial experiments using a large graph dataset from
Twitter show promising results. We demonstrate the scalability of our algorithm
by implementing it both on Hadoop, and a more flexible platform named REEF.

1 Introduction

PCA, and the related Singular Value Decomposition (SVD), is a popular tool to compress high-
dimensional data to fewer dimensions and uncover hidden patterns [16,[21]]. Given a dataset X &
R™*P with SVD X = UXV, the product UX are the principal components and V are called
the loadings. Recent randomized algorithms for PCA and SVD can scale to datasets with large
n in a distributed setting [9}/15,|17]]. If the data are distributed close to a k-dimensional subspace
(k < p), these algorithms need only two passes over X to compute the top % singular values.
However, they require O(pk) memory, which could be a bottleneck for datasets that are both “tall
and wide”, e.g., from text and graph domains. Karampatziakis and Mineiro [10] recently proposed
the HashPCA algorithm to mitigate this bottleneck by interleaving a structured projection to lower
dimension d < p with unstructured randomness within a randomized PCA algorithm [9]. HashPCA
needs only O(dk) memory, and the parameter d can be chosen based on the underlying hardware.

We provide an initial demonstration of the utility and scalability of HashPCA. We discuss distributed
implementations of HashPCA on the MapReduce/Hadoop framework and a new distributed compu-
tation platform named Retainable Evaluator Execution Framework (REEF) [5]]. REEF provides an
abstraction on top of the cluster resource manager YARN [23]] to make it easier to write distributed
applications. Implementing machine learning algorithms on REEF offers key systems-level advan-
tages over Hadoop to improve performance, scalability, and robustness — viz. caching, sophisticated
aggregation, locality-awareness, and fault-awareness. We demonstrate some of these advantages
using HashPCA on a real tall and wide dataset — a user-follower relationship graph from Twitter.

Background and Related Work Our work builds upon Halko et al.’s recent algorithm for truncated
SVD [9]. Other scalable algorithms have also been proposed for SVD on datasets that are either tall
or wide [8}/15}/17,|18]]. Hashing has been effectively used to approximate high dimensional feature
maps in many applications [[19}20,24]. It is typically implemented by representing all features as
strings from an alphabet ¥ and then using a hash function h : ¥* — {1,...,d} to map each original
feature to a hashed feature. HashPCA utilizes feature hashing as a sparsity-preserving structured
randomness to enable PCA on sparse datasets that are both tall and wide.

There is increasing interest in platforms for writing distributed applications to process “Big Data”.
Hadoop [25] is an open-source system that implements the MapReduce programming model [6].
Spark [26], Asterix [3]], and Stratosphere [[12] provide data flow-based programming models coupled
with parallel runtimes, while GraphLab [[13]], and Pregel [14] provide graph-parallel programming
models. In contrast, REEF decouples the programming model from the runtime.

Algorithm 1 HashPCA: Truncated PCA with hashing

Inputs: X,,»,, Hyxa, k,d > H not materialized
I: Qaxr < Random Gaussian matrix (€2;; ~ N(0, 1))

2: Yaup + (XH)(XH)Q /n > First data-parallel pass
3: Qgxr < Gram-Schmidt Orthonormalization of the column space of Y. > O(dk) space
4 Zaxr <~ (XH)T(XH)Q /n > Second data-parallel pass
5: YE4YT « Spectral decomposition of Z T Z >ZTZ c RFxk
6: return (V; = ZY(X2), £;) > 1 is the Moore-Penrose pseudo-inverse of ¥

2 Scalable PCA on Tall and Wide Datasets

Let X € R"*P be the data matrix. We assume that the data are centeredE] The SVD X = UXVT
yields orthogonal matrices U € R™*™ and V € RP*P, while ¥ € R"*P is a diagonal matrix
with entries 3;; = o; in non-ascending order. Truncating by utilizing the top k singular values
yields the bast rank-k approximation of X (k <= min(n,p)) in the Frobenius norm [7]], leading
to X = UkEkV,I where U, € R"*F, 3, € RF¥* and V;, € RP**. Any SVD algorithm can
compute V, and ¥;. However, for large n or p, only randomized SVD algorithms are practical.
Randomized SVD algorithms work in two phases. In the first phase they employ a random projection
matrix {2 as a way to probe the range of X (or the covariance %XTX). This requires at least one

pass over the data, which can be streamed along the examples since 21X TXQ = 13" 2,27 Q,

where] is the i-th example (row) of X. Next, they orthogonalize the image of €2 under the data
and project onto that basis in the second pass. Although these algorithms have been adapted for
PCA before [8}18], to the best of our knowledge, they assume that the orthogonalization step can
be done efficiently. This is possible if either n or p is not too large, but not both. When p < n, this
step uses O(pk) memory and has time complexity O(pk?). It is efficient if p is modest, say, 10° on
current commodity hardware. However, for large datasets that also have large p, e.g., the adjacency
matrix of an online social network, this step might become impractical

HashPCA (Algorithm [I)), employs structured randomness to reduce the number of features from
p to d (where d < p) so that randomized SVD algorithms become viable. Thus, both the space
complexity and communication cost (in a distributed setup) are reduced from O(pk) to O(dk).
Although not materialized, we represent the structured randomness as a matrix H € RP*¢, For
sparse data, e.g. text or social graph data, hash based structured randomness [24] is computationally
convenient and empirically effective. Conceptually, this scheme multiplies the data by a hashing
matrix H € RP*? which is determined by two hash functions # : {1,...,p} — {1,...,d} and
§:{1,...,p} = {£1}, with Hyj|¢ , = £(i)14(;)=;. Other choices of structured random projections
such as subsampled fast real transforms (e.g. Walsh-Hadamard, Hartley) can be used, and should be
used if the data vectors are dense.

3 Scalable Distributed Implementations

In Algorithm([I] steps 2 and 4 are data-intensive and can be trivially parallelized along the rows of X.
We now discuss the implementation of HashPCA on two distributed data processing frameworks:
MapReduce/Hadoop and the Retainable Evaluator Execution Framework (REEF).

MapReduce/Hadoop We perform one MapReduce job per pass, coordinated by a centralized
Driver program. The dataset X resides on HDFS, and is partitioned row-wise (one example per
line). In the first pass, each Mapper initializes a partial sum for Y in the setup () function, and
uses a given random seed to initialize €2. The map () function parses an example x;, hashes it and
accumulates the partial covariance (H " 2;(H "z;) T Q) into Y. Each Mapper emits its partial sum
Y as part of a single key-value pair in its cleanup() function. The Reducer aggregates all partial
sums to obtain the projected covariance matrix. The Driver computes the orthonormalization and
writes Q to HDFS. The second job is similar to the first, except that each Mapper also reads Q along
with the data blocks, and the driver computes the spectral decomposition.

"Uncentered data requires a simple rank-one modification to Algorithmfor additional O(d) space.
*However, we are also looking at adopting some interesting recent ideas on distributed QR factorization [4).

ieThesets roiokb TWTRM ki
—

— | JerryBroughton
gregjamessonBradbur thinkreferralsy y~‘ g
liamgallagher vty te
e fudwike MarkClayson i
Activity 8 Activity Rilseylen ; gemstars Rick
Evaluator [N Evaluator BEsreKIng Mike Wesely _Samjones = qgiiiaianive
JEverywhereTrip
DtyanaAIchaI/(gm per josicomm StartupPro et
xavierfur shoemoney dQuoft
o
DaveMalby i
ScotMieKay s
2 Activity 1 2 Activity N nansen B—_— barak__oban"é’ 7or|1(7 Be
8 -1 [l 8 Evaluator N caseywright) ClintonNews 99
$| Evaluator 1 $|Evalu ooy RickSanchezTV TS |
,—’_‘—t_‘ f mlz?glle;ndkln sl
oxandfriends
ORA . B e

Figure 1: On the left: (A) High-level architecture of a distributed application on REEF. (B) Data-
parallel computation for HashPCA on REEF. On the right: A portion of the Twitter embedding
showing a geographically coherent “British” cluster (top left) and a topically coherent “News” clus-
ter (middle and bottom right).

Retainable Evaluator Execution Framework (REEF) REEF is a framework that aims to make
it easy to implement scalable, fault-tolerant runtime environments for a range of computational
models. It provides an abstraction atop the cluster resource manager YARN to enable hardware
and software resources to be retained across applications. Thus, REEF decouples the lifetimes
of resources from the lifetimes of applications. REEF’s abstraction consists of the following — a
Driver process that orchestrates control flow, Activities, which perform the data processing and
computations (generalizing Mappers and Reducers), Evaluators that act as containers on which
Activities are run, and Services, which are objects (e.g., cache, connections, etc.) that are retained
by an Evaluator across Activities that run on it. The control flow is centralized in the Driver, which
consists of user-supplied event handlers for events such as system startup, allocation of Evaluators,
start and completion of Activities as well as various failure scenarios.

Our implementation of HashPCA on REEF is similar to the one on Hadoop (Figure [T{B)). The
dataset is pre-partitioned into M blocks on HDFS. The job Driver controls both passes and performs
the orthonormalization and spectral decomposition. Based on the number of available machines (a
user-given parameter), the Driver requests /N Evaluators. The Driver then executes one Activity per
Evaluator. Each Activity reads and processes % data blocks. The Activities essentially perform the
same computations as the Mappers in our Hadoop implementation. Upon completion, the Activities
notify the Driver, which then starts the aggregation, akin to the Reducer. In our current implemen-
tation, each Activity sends its partial sum directly to the Driver through a messaging API that relies
on the Netty framework. If the message is too large for Netty to handle (specifically, larger than
IMB [1]]), the Activities write the partial sum matrices to HDFS. The Driver then reads the matrices
from HDFS to perform the aggregation. The second pass is performed in a similar manner.

Our experience with implementing HashPCA on both REEF and Hadoop highlighted four systems-
level advantages of REEF. (1) Caching: Hadoop has high I/O overhead since it reads data from disk
in both passes. In REEF, we implemented a simple cache on the Evaluator to store as many parsed
and hashed examples as possible in memory in the first pass so that the second pass is faster. (2)
Aggregation: REEF enables us to configure aggregation trees of different fan-outs and also con-
trol how much data is read and when during aggregation. (3) Locality-aware Scheduling: Unlike
Hadoop’s fixed greedy scheduling policy to allocate Mappers to blocks, REEF enables us to exploit
more factors such as data locality, network topology, node capacities, etc. (4) Fault-Awareness: Un-
like Hadoop’s a fixed fault tolerance policy of restart recovery, REEF enables us to adopt alternative
fault handling mechanisms that could potentially improve performance.

Currently, we have only implemented the Caching functionality and plan to incorporate the others
in the future as REEF matures. Still, as our experiments will show, our implementation on REEF
provided better performance and scalability than Hadoop, We believe this is a promising first step
for building more scalable machine learning algorithms on REEF.

400 Fix d=1000, vawk Fix k=30, vary d Speedup (d=1000, k=30)

m Mahout T 820 1531 2469 1531 2149 z o
=Mahout + Hash o = E E 300 E E 600
Hadoop E 200 E 200 % 400
11111111 ™
W REEF (cache) 0lX 10000 500 0 0

Number of d|men5|ons (k Number of hash buckets (d) Number of workers

Figure 2: Plots of runtimes as we vary k and d, fixing one at a time. Mahout crashed for all these
settings, while Mahout + Hash worked (hashing time excluded). Also shown are the speedups.

4 Experiments

We now present some initial experimental results that validate the utility of HashPCA as well as test
the performance and scalability of our distributed implementations.

Dataset and Setup We use a large public graph data set derived from a 2009 crawl of Twitter [[11].
We constructed the adjacency matrix, where entry (i, j) indicates if a user ¢ follows user j. We
removed users who followed < 5 or > 300 other users, yielding 18 million examples. The dimen-
sionality (p) is 29 million. The dataset is in plain text Vowpal Wabbit format [2] and is 17GB in size.
The experiments were run on a 23-node cluster on the Azure cloud service with Ubuntu 12.04.2
VMs. Each instance is of class Medium (A2) with 3.5GB RAM, 10GB disk, and 2 virtual AMD
Opteron 4171 HE cores. We installed Apache Hadoop 2.0.4 and used default replication of 3.

Quality of HashPCA Results We run HashPCA on the Twitter graph data with parameters & = 30
and d = 1.3 million. The loadings form an “interest fingerprint” operator, which projects any user
into a latent space based upon the set of users who are followed by that user. We can explore
the impact of any single user on this latent representation by projecting a singleton follower set
containing only that user. We did this for the 2000 most popular Twitter accounts in the dataset,
and then used t-SNE [22] to project down to two dimensions for visualization. A portion of the
visualization is shown in Figure |I} The figure shows both geographically coherent and topically
coherent clusters, which indicate that PCA has captured interesting structure from the graph.

Performance and Scalability We now compare the performance and scalability of our distributed
implementations. We also present results for an open-source toolkit for SVD and PCA from Apache
Mahout. We expect Mahout to crash since this dataset’s dimensionality is too large for its imple-
mentation. Hence, we hash the dataset as a pre-processing step for Mahout. We pre-partitioned the
dataset into 20 blocks on HDFS. Thus, Hadoop spawns 20 Mappers and REEF uses 20 Evaluators.
We vary the two main parameters — number of PCA dimensions (k), and number of hash buckets
(d), and also vary the number of compute nodes. Figure [2[shows the results.

As expected, Mahout crashed since p is too large (we verified that in its implementation, a Reducer
accumulates blocks of size O(pk) in memory, which is about 2.3GB per block without Java object
overheads). HashPCA mitigates this bottleneck by bringing the memory needed from O(pk) down
to O(dk). Mahout works on the hashed dataset, but is still slower than our Hadoop implementation
(between 400% to 1000%). Our REEF implementation is marginally faster than Hadoop, due to
lower framework overheads (start-up, function calls, etc.). However, REEF with caching is 40% to
100% faster than Hadoop. The runtimes for our HashPCA implementations increases slowly with k
and d, since the I/O cost of scanning is dominant. We also see near-linear speedups for both Hadoop
and REEF — about 3.3x as the number of nodes is quadrupled. REEF with caching has a higher
speedup of 3.6x since the whole dataset fits in the cache across 20 nodes in the second pass.

5 Conclusion and Ongoing Work

We presented a new, scalable algorithm for PCA that combines structured and unstructured random-
ness within a randomized PCA algorithm to scale to tall and wide datasets. We implemented the
algorithm on MapReduce/Hadoop and REEF and discussed how REEF’s primitives provided greater
efficiency and scalability. We provided an initial validation of the benefits of HashPCA using a real
dataset from Twitter. Our ongoing work is on incorporating new REEF APIs for aggregation trees
and scheduling (apart from caching) as well as adding fault-awareness into distributed PCA.

References

[1]
[2]
[3]
[4]

[5]
(6]
(7]
[8]

[9]

[10]
[11]

[12]
[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]
[26]

The netty project. http://netty.iol
Vowpal wabbit. http://hunch.net/~vw,
S. Alsubaiee et al. Asterix: an open source system for“big data” management and analysis. VLDB (Demo), 2012.

D. F. G. Austin R. Benson and J. Demmel. Direct qr factorizations for tall-and-skinny matrices in mapreduce architectures. IEEE
BigData, 2013.

B.-G. Chun et al. Reef: Retainable evaluator execution framework. VLDB (Demo), 2013.
J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. OSDI, 2004.
C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211-218, 1936.

N. Halko, P--G. Martinsson, Y. Shkolnisky, and M. Tygert. An algorithm for the principal component analysis of large data sets. SIAM
Journal on Scientific Computing, 33(5):2580-2594, 2011.

N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions. SIAM review, 53(2):217-288, 2011.

N. Karampatziakis and P. Mineiro. Combining Structured and Unstructured Randomness in Large Scale PCA. ArXiv e-prints, Oct. 2013.

H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? In WWW ’10: Proceedings of the 19th
international conference on World wide web, pages 591-600, New York, NY, USA, 2010. ACM.

M. Leich et al. Applying stratosphere for big data analytics. BTW, 2013.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed graphlab: a framework for machine learning
and data mining in the cloud. VLDB, 2012.

G. Malewicz et al. Pregel: a system for large-scale graph processing. ACM SIGMOD, 2010.
D. Okanohara. redsvd (software). https://code.google.com/p/redsvd, 2010.

K. Pearson. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 2.11:559-572, 1901.

R. Rehiifek and P. Sojka. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45-50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/publication/
884893 /en|

V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component analysis. SIAM Journal on Matrix Analysis and
Applications, 31(3):1100-1124, 2009.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan. Hash kernels for structured data. The Journal of Machine
Learning Research, 10:2615-2637, 2009.

S. Sonnenburg and V. Franc. Coffin: A computational framework for linear svms. In Proceedings of the 27th International Conference
on Machine Learning, Haifa, Israel, 2010.

M. Turk and A. Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1):71-86, 1991.
L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(2579-2605):85, 2008.
V. Vavilapalli et al. Apache hadoop yarn: Yet another resource negotiator. SOCC, 2013.

K. Q. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and A. J. Smola. Feature hashing for large scale multitask learning. CoRR,
abs/0902.2206, 2009.

T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working sets. HotCloud’10, 2010.

http://netty.io
http://hunch.net/~vw
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

	Introduction
	Scalable PCA on Tall and Wide Datasets
	Scalable Distributed Implementations
	Experiments
	Conclusion and Ongoing Work

