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Abstract
Most existing frameworks for distributed ma-
chine learning are either tied to a specific data
platform, or focus on novel computational and
communication abstractions. The latter often ne-
glect the constraints of shared-use clusters, such
as fault tolerance, fair resource (network, CPU)
usage, and isolation. This paper proposes a new
distributed ML framework, SALMON, that ab-
stracts the key components (control flow, par-
titioned data store, group communication) and
relies only on above-resource-manager platform
dependencies (via Apache REEF). The result-
ing framework is both expressive for common
ML algorithm patterns (e.g., iterative MapRe-
duce and parameter server), and flexible to oper-
ate on a variety of conventional, shared-use plat-
forms (e.g., Apache Hadoop and HPC). Early
experiments demonstrate the promise of this ap-
proach via comparisons with Apache Spark on a
large-scale production dataset.

1. Introduction
Scaling up machine learning methods is an active research
area motivated by the challenges of ever-increasing data
volumes and velocity, and enabled by the availability of
new, powerful distributed computing platforms. In recent
years, a number of parallel ML frameworks have emerged,
which can be grouped into two broad families:

• ML-centric: motivated by the desire to design ele-
gant, efficient abstractions for ML algorithms, such
as GraphLab (Yucheng Low & Hellerstein, 2012),
Petuum (Xing et al., 2015), and Parameter Server (Li
et al., 2014).

• Platform-centric: built for particular data platforms
(e.g., Hadoop or Spark (Zaharia et al., 2010)), such
as MAHOUT and MLLIB (Meng et al., 2015).
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There is an inherent trade-off between the two approaches:
while ML-centric frameworks focus on architecture inno-
vation and optimizing the control flow and communication
for ML algorithms, they also require extensive adaptation
for use in production, shared-use systems. Platform-centric
approaches, in contrast, are able to leverage all functional-
ity provided by the APIs of the underlying data platform,
but are also limited by them. The dependence on platform-
specific components inherently makes such frameworks
less useful for heterogeneous-platform production environ-
ments, and potentially obsolete as platforms evolve.

Getting the best of both worlds – implementation flexibil-
ity of ML-centric platforms and pluggabilty into shared-
use platforms – is the holy grail for production-grade ma-
chine learning frameworks. In this paper, we investi-
gate a ground-up approach to designing such a framework,
SALMON (Scalable Architecture for Learning Methods
On Networks). We examine the patterns that should be
enabled to implement state-of-the-art ML algorithms, and
present early but promising experimental results.

Our investigation is framed by both recent developments
in data platforms (the emergence of resource managers as
their core abstractions) and ML methods (the rise of asyn-
chronous, stochastic optimization methods). We identify a
set of key building blocks for assembling a wide range of
ML-specific systems, while facilitating deep platform inte-
gration. A flexible, but manageable container-based con-
trol flow forms the basis of this set. An abstraction for
partitioned datasets standardizes data access across other-
wise heterogeneous data platforms. Finally, group commu-
nications primitives provide the predominant communica-
tions patterns for modern ML systems. Using these build-
ing blocks, we assemble specific systems for established
distributed ML approaches, such as iterative MapReduce
and Parameter Server. Furthermore, the very same building
blocks can be used to assemble algorithm-specific systems.
In all of this, we expect to improve upon the platform-
centric frameworks both in terms of raw performance and
elegance of expression of the machine learning methods.

In the remainder of this paper, we provide background on
modern cluster environments, describe the building blocks
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introduced above and how they can be used to assemble
ML systems. We present initial experiments comparing
SALMON favorably to Spark’s MLlib and conclude the
paper by outlining a number of promising directions for
future work that we are currently pursuing.

2. Background
Historically, cluster environments have exposed a single
programming abstraction – e.g., in the case of Hadoop, that
was MapReduce. This constraint forced an uncomfortable
compromise between the needs of machine learning algo-
rithms, which favored other abstractions, and the ease of
integration into production systems built on those clusters.

Resource managers like Apache Mesos (Hindman et al.,
2011) and Apache Hadoop YARN (Vavilapalli et al., 2013)
have emerged to address this challenge. They provide high
efficiency under multi-tenant workloads, and, more impor-
tantly, allow programming via multiple abstractions: pro-
duction batch jobs of one team can run right alongside
the exploratory interactive jobs of other teams. For exam-
ple, MapReduce now becomes one of the multiple applica-
tions running on top of a resource manager (e.g., YARN).
Resource managers provide the performance and security
isolation required in this architecture. Applications are
split into containers, each of which represents an isolated
fraction of a physical machine. Depending on the cluster
in question, containers are implemented as well-insulated
processes, fast-starting virtual machines, or hybrids be-
tween the two. Different resource managers implement dif-
ferent container allocation schemes, but they all agree on
the basic container abstraction.

Within the confines of the container abstraction, applica-
tions are free to implement whichever data and control
plane they choose. This allows any of the ML-centric
frameworks to be ported to a resource manager. At the
same time, resource managers standardize the allocation,
billing and general management of the cluster resources.
This facilitates the easier integration of ML-centric frame-
works into production control and dataflows.

3. SALMON Architecture
3.1. SALMON Building Blocks

While resource managers provide excellent flexibility to
applications, their low position in the distributed platform
stack makes programming against them suboptimal, since
they provide no data management APIs. The support for
control flow can also be problematic, as resource managers
typically only facilitate a set of very basic operations: allo-
cation of containers, delivery of resources such as program
binaries, and launch and exit notification for tasks.

SALMON builds on the insight that while resource alloca-
tors provide a strong base layer for platform-independent
machine learning systems, they also require additional
building blocks to support commonly-used ML-centric ab-
stractions. It is an open research problem to identify a suf-
ficient basis set of such building blocks, and in this work,
we conjecture that the following three are necessary: (1)
control flow support, (2) group (or collective) communica-
tions, and (3) partitioned data representations.

3.1.1. CONTROL FLOW: APACHE REEF

ML systems need control flow primitives beyond those pro-
vided by the resource manager. For example, we need
to send tasks to individual containers, maintain state (e.g.
training data) on those containers, and receive notifica-
tions of progress as well as failure. However, different
ML systems are not in agreement about either their spe-
cific scheduling policies, nor their approach to data man-
agement and fault handling. Hence, SALMON needs to
provide a sufficiently high-level abstraction to simplify the
shared aspects of different ML systems, while maintaining
the flexibility to allow bespoke control flows for specific
(classes of) algorithms (e.g., early stopping of splits for tree
learners).

Because of these requirements, we choose Apache
REEF (Weimer et al., 2015) to provide the control-flow
layer of SALMON. REEF provides the basic primitives for
developing portable applications on multiple resource man-
agers. It provides a control-flow master – the Job Driver
– which provides the reactive framework for handling the
events of a distributed system in a centralized fashion. Such
events include the allocation of containers, completion of
tasks, or the failure of a container. The detection of those
events as well as default behaviors for common patterns is
provided by REEF. On each container, REEF instantiates
an Evaluator – a runtime for the application tasks. Each
Evaluator provides services such as messaging between
tasks on different containers. REEF is language-neutral
and portable across resource managers: it supports JVM-
and CLR-based programs on YARN, Mesos, and execution
on individual servers.

3.1.2. GROUP COMMUNICATIONS

ML systems require communications between their con-
tainers. Beyond low-latency peer-to-peer communications,
this often includes collective or group communications
across many containers. Examples include the MPI op-
erators BROADCAST (which sends a datum from one to
many containers), REDUCE (which aggregates the inputs
from many containers to one) and ALLREDUCE (which
merges a REDUCE followed by a BROADCAST for better
performance). In SALMON, we provide all these opera-
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tions. Different from MPI, they are elastic: containers can
be added and removed from the communication groups at
runtime; either by choice of the algorithm or because of
machine failure. This enables algorithmic fault tolerance
and elastic work scheduling for ML algorithms (Narayana-
murthy et al., 2013; Beutel et al., 2014).

3.1.3. PARTITIONED DATA

Training data in distributed machine learning is partitioned.
For data-parallel learning, each partition contains a subset
of the examples. For model-parallel learning, each parti-
tion contains a subset of the features of the examples. Both
of these approaches are frequently combined for the utmost
in scalability. In SALMON, we provide abstractions to ac-
cess data partitions in each container. Further SALMON
provides an abstraction for the scheduling of containers that
takes data locality and data statistics into account.

Using these building blocks, we assemble ML-specific ab-
stractions. The list of supportable abstractions is our ongo-
ing research agenda. Here, we describe a simple abstrac-
tion, Iterative Map-Reduce-Update in some detail and sum-
marize the SALMON Parameter Server.

3.2. Iterative Map-Reduce-Update
Many machine learning algorithms can be expressed in
the Statistical Query Model (SQM) (Kearns, 1998). Al-
gorithms in this model include linear models and SVMs.
In this model, an algorithm is expressed purely in terms of
statistical queries over the training data. Such queries can
be thought of as the sum of a function applied to all data
points. This formulation is easy to implement in MapRe-
duce (Chu et al., 2006), which spawned Apache Mahout
and is at the core of Apache Spark’s attraction for machine
learning. However, MapReduce systems only manage the
query execution, not the overall data flow of the SQM al-
gorithm: Each query can be executed in MapReduce, but
the overall flow requires many of those to be executed,
and subsequent queries depend on the results of earlier
ones. In MapReduce systems, this is awkward as the re-
sult of a query is sent to a single driver process which then
submits another MapReduce round, potentially incurring
heavy scheduling and data loading overheads each time.

In SALMON, we provide first-class support for this algo-
rithm structure via the Iterative Map-Reduce-Update ab-
straction (IMRU), where an algorithm consists of 3 func-
tions:

map : TmapIn ! TmapOut

reduce : [TmapOut]
⇤ ! TmapOut

update : [NULL|TmapOut] ! [TmapIn|Tresult]

Here, the map input TmapIn denotes the side information
for the mappers, e.g. the current model in a gradient de-
scent algorithm. The training data is assumed to be pre-

partitioned and available to the mappers. The map out-
put TmapOut is aggregated by reduce, which is assumed
to be associative and cumulative. The update function de-
cides if there is another query, in which case it returns a
new TmapIn to the mappers or if the job shall emit a result
Tresult, e.g. the model. In practice TmapIn often is a com-
posite type which encodes both the query and its parame-
ters, e.g. compute gradient and the current model.

In SALMON, IMRU is implemented using the group com-
munications operators introduced above: The output of
update is BROADCAST to the map function whose out-
put is fed to reduce via the REDUCE operator. This ap-
proach is much more efficient than a MapReduce imple-
mentation, as scheduling and communications can be op-
timized for the known data flow instead of having to be
solved ad-hoc in each iteration.

3.3. Parameter Server and beyond

IMRU is an example of a Bulk-Synchronous-Parallel (BSP)
approach. There is a hard synchronization barrier, as
update requires input from all of the map functions to con-
tinue. This can be problematic when the machines involved
don’t have uniform performance or when they get differ-
ent workloads, as is common in distributed bayesian learn-
ing. Parameter Servers emerged as a successful approach
to learning problems in that regime. Instead of updating
parameters in bulk as part of the update function, they are
continuously updated. To do so, some containers assume
the role of servers responsible for managing partitions of
the model, while the remaining containers are workers that
perform passes over their respective partition of training
data. Updates are exchanged between workers and servers
on a continuous basis. A Parameter Server can be assem-
bled from the building blocks above: the workers commu-
nicate with the servers via the communications library and
get scheduled based on the partitioned data set abstraction.
The servers need local state management which is beyond
the scope of this paper.

Beyond established models of distributed machine learn-
ing, SALMON also facilitates the assembly of systems
specific to a learning algorithm. For instance, in (Beutel
et al., 2014), we used the partitioned data abstraction and
the communications library to implement a work-stealing
elastic approach to the scheduling of model updates: The
model is partitioned into a set of small blocks. Non-
overlapping blocks of that model can be scheduled for up-
date in parallel. Worker containers pull these blocks off of
a central queue. This approach scales naturally to different
numbers of workers. And, more importantly, the number
of workers can change during the runtime of the algorithm
to account for resource availability.
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3.4. Integration with Data Platforms
SALMON integrates with the underlying data platforms in
several ways. Most importantly, it executes on the data
platform’s nodes, allowing tight integration with the stor-
age layer via the partitioned dataset abstraction, thus min-
imizing data transfer costs. Beyond integration with the
runtime and storage layers, SALMON also provides cru-
cial hooks for operationalization of ML systems on public
cloud. SALMON provides metrics, counters and logs for
the ML layer, facilitating deep integration with the debug-
ging, monitoring and billing features of the data platform.
Lastly, SALMON provides a central way to impose cluster
policies across a wide range of specific ML systems, such
as custom restrictions on network connection and local I/O
preferences (e.g., preferences for SSD storage).

4. Experimental Results
Algorithm: We implemented the OWL-QN opti-
mizer (Andrew & Gao, 2007) based on L-BFGS (Liu &
Nocedal, 1989) using the IMRU framework described in
the previous section, allowing us to train logistic regression
models with L1 and L2 regularization. For the experiments
described below, the regularization parameters were set to
10�6 for L1 and 0 for L2, with history size m = 10. For
experiments with high-dimensionality (over 70 million fea-
tures), we use VL-BFGS which distributes the L-BFGS
state (gradient and update history) and avoids the dot prod-
ucts in the two-loop recursion (Chen et al., 2014).

Dataset: All experiments are performed on the production
dataset for training click prediction models of a leading
search engine. The data set consists of around 1.1 billion
examples with 75M features. To study the effects of di-
mensionality and to allow direct comparisons with Spark
MLLIB, we applied MurmurHash3 (Appleby) to generate
derived data sets with 1M, 500k and 1k features respec-
tively. Note that since original dimensionality is very large
and feature vectors are extremely sparse, hashing has mi-
nor impact on the original data size. Train and test sets
were obtained via an 80-20 split.

Baseline: We compare SALMON to Apache Spark (Za-
haria et al., 2010) 1.6.1. We use the logistic regres-
sion in MLLIB (Meng et al., 2015) included in Spark in
“org.apache.spark.ml” package that uses the OWL-QN op-
timizer, similar to the one implemented in SALMON. Sig-
nificant effort was made to try to find the best possible con-
figuration for Spark experiments. For instance, we config-
ured Spark to use the KRYO SERIALIZER, instead of the
default JAVA SERIALIZER, which improved Spark’s perfor-
mance by around 40% in our experiments.

Infrastructure: We report experiments on a 112-node
YARN cluster running on Windows Server 2012R2. Each
node has two Intel 8-core Xeon E5-2660 2.20GHz CPUs

Number of features
Platform 100k 500k 1M

Spark MLLIB 17.5 39.0 148.5
TLC++ 9.2 11.5 15.0

speed-up 1.9x 3.39x 9.9x

Table 1. Comparison of total training time (in minutes) for 100
iterations, with limited feature space dimensionality, using the
OWL-QN optimizer on different platforms. Reported times mea-
sure only training phase and don’t include initialization, reading
data, writing output etc.

and 104GB of RAM. On each node, 20 virtual cores and
100GB of memory were available to YARN containers.

Results: Table 1 compares the time of 100 iterations of
SALMON and MLLIB for different dimensionalities, us-
ing 100 containers with 20 virtual cores each. In each
case, both trainings converged to similar models with al-
most the same Areas Under an ROC Curve when validated
against a test set. Results demonstrate SALMON to be 1.9-
9.9x faster on this dataset, with speedups growing with in-
creased dimensionality, demonstrating the communication
efficiency benefits of SALMON.

We also observed Spark to require more memory. While
for SALMON it was sufficient to allocate only 10GB per
container to run efficiently, attempts to run Spark with sim-
ilar amount of memory caused numerous issues. To resolve
this problem and ensure clean results, we allocated 80GB
per container (8x more than SALMON) to Spark.

Finally, we attempted to train both MLLIB and SALMON
on the non-hashed, 75M-dimensional dataset. MLLIB runs
have failed due to excessive communication. In contrast,
the SALMON implementation of VL-BFGS completes
100 iterations on that data set in 50 minutes. Using a pro-
prietary implementation of VL-BFGS on Spark that in-
corporates improvements and optimizations to Spark Core,
training completed, however it took 96 minutes – 1.9 times
slower.

Discussion: These initial experiments verify that our ap-
proach can outperform the platform-centric approach, ex-
emplified by MLLIB. This is to be expected, as IMRU can
utilize efficient, persistent group communications where
MLLIB has to rely on the flexible, but comparatively
slow data movement primitives in Spark. Furthermore,
SALMON facilitates optimizations such as the use of lower
precision floating point representations, which aren’t read-
ily accesible to Spark developers. Future work shall not
only investigate the contributions of each of these, but also
compare SALMON with other ML-centric frameworks.

5. Conclusions and Future Work
Defining the basic abstraction layers for a platform-
agnostic distributed ML framework has allowed us to com-
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bine the benefits of ML-centric and platform-centric sys-
tems, while leveraging the flexibility of Apache REEF
to allow deployment in shared-use production clusters.
The initial performance results of the proposed SALMON
framework in comparison to Spark’s MLlib are highly en-
couraging. In ongoing work, we are implementing addi-
tional algorithms and integrating SALMON with leading
parallel data platforms, and are highly optimistic that the
presented approach yields a practical, highly-performant
architecture for the next generation of distributed ML sys-
tems.
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